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TECHNICAL NOTE 3820

ON POSSIBLE SIMITARITY SOLUTIONS FOR THREE-DIMENSIONAL
INCOMPRESSIBLE LAMINAR BOUNDARY LAYERS
III - SIMILARITY WITH RESPECT TO STATIONARY POLAR
COORDINATES FOR SMALL ANGLE VARTATION

By Howard Z. Herzig and Arthur G. Hansen

SUMMARY

Approximate solutions are obtained describing mainstream flows con-
fined to regions of small angle variation over flat surfaces for three-
dimensional, laminer, incompressible, thin boundary-lsyer flows having
similarity with respect to stationary polar coordinate systems. The solu-
tions, summarized in a table, include accelerating or decelerating flows
and stagnation-point, spiral, or circular flows. An experimental compari-
son of limiting overturning at the wall showed good agreement for the
first 10° of turning of circular mainstream flow.

INTRODUCTION

In addition to providing an Insight into secondery-flow behavior
assoclated with laminar boundary-lsyer flows, the experimental investiga-
tions of references 1 to 3 demonstrate that the information thus obtained
for laminar flows can be used to interpret and to correlate flow measure-
ments taken in turbomachines at operational conditions. These experimental
investigations thereby provide an important link between applied turbo-
machine research and the similarity-type boundary-leyer analyses developed
in references 4 to 12. The lirk 1ls further strengthened by the combined
theoretical and experimental investigation of reference 13. In reference
13, boundary-layer similarity solutions are obtained for main flows con-
sisting of streamline translates (i.e., the entire streamline pattern can
be obtained by translating any particuler streamline parallel to the
leading edge), and the theoretical predictions of boundary-layer over-
turning (more than mainstream turning) near the surface are in close
agreement with experimental results obtained by tracing the boundary-
layer streamlines with smoke flow-visualization techniques.
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Using a generalized similarity variable 71, reference 14 extends
these results analyticslly to obtain all possible flows with boundary
layers having classical similarity with respect to stationary rectangular
coordinates. ' The dimensionless boundary-layer velocity components in the
plane of the surface are assumed to have similarity with respect to their
respective coordinates. This similarity is expressed by means of two
suitably defined functions of the similarity variasble. The boundary-layer
equations are then transformed to equations involving the mainstream flow
components, their derivatives, the simllarity functions, and their deriva-
tives. All the malnstream flows are then determined for which the trans-
formed boundary-layer equations reduce to ordinery differentisl equations
in the similarity functions and their derivatives. Four distinct fami-
lies of such mainstream flows are obtained in reference 14; including
cases of accelerating or decelerating flows for quite general streamline
paths. The main-flow streamlines are not required to be translates, nor
are they restricted to regions of small turning in reference 14.

In reference 15, solutions are-obtained for the mainstream flows

whose boundary-layer velocity components in the plane of the surface have

glmilarity with respect to the corresponding polar coordinates. Thus,
exact solutions are obtalned for spiral, circular, and stagnation-point
flow configurations with no restrictions on mainstream turning. For the

solutions thus obtained, however, a proper leading edge cannot be defined.

(A proper leading edge, which corresponds theoretically to a real physical
leading edge, would be a line or curve of zero boundary-layer thickness
on the surface, downstream of which the boundary layer develops.)

The present investigation extends the analysis of reference 15 by
considering the flows in & sector-region of small central angle 6. The
purpose of this investigation is to determine mainstream flow solutions
for which the transformed boundary-layer equations reduce to ordinary
differential equations. Solutions are obtained for four new famlilies of
mainstream flows with boundary layeérs having similarity with respect to
the polar coordinstes in the plane of the surface. Included here are
cages for flows over well-defined leading edges. It 1s important to note
that experimental investigations (refs. 1 to 3 and 13) indicate that in
typical turbomachine configurations a large portion of the end-wall
boundary layer at the inlet to a passzge has completely crossed from the
pressure to the suction side of the passage when the mainstream has been
turned less than 30°. Thus, in describing physical flow, it—appears not
unreasonable to restrict the analysis to small central-angle sectors.

The reglions where this assumptlon might be considered reasonable are
established by a theoretlical and experimental comparison of the boundary-
layer limiting flow deflection (ref. 13) in a circular two-dimensional
channel.

- ~——
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a,b,c,C
F,F(n)
FHK -n)
£(r),£%(r)
f(x,e)

GJG(ﬂ)

u,v,w

-ﬁ,—ﬁ(r, 8)

T

n

v
Subscripts:
i=1,2,3, .

Superscripts:

SYMBOILS
constants

function of similarity parameter, u =

UF*(n)

function of similarity parameter, eq. (45)

arbitrary functions of r

arbitrary function of r and 6

functlon of similarity perameter, w m WG'(n) for W # O,

= W'(n) for W=0
function of coordinates r and @
function of @
constants
cylindrical coordinsates

constant

mainstream velocity components in 6 and r direc-

tions, respectively

boundary-layer velocity components in 6, y, r direc-

tions, respectively

function of coordinates r and 6, w =
W=20

boundary-layer deflection at surface
similarity varieble n = yg(r,0)/A/N

coefficient of kinematic viscosity

index nunbers

Primes denote dlfferentiation

= Wa'(n) for
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ANALYSIS
Boundary-Layer Equations in Stationary Cylindrical Coordinates
The three-dimensional laminar incompressibletthin boundary-layer

equations in cylindrical coordinate form for flows over flat (or nearly
flat) surfaces with stationsry coordinate axes as shown here

are given by

uw  u du o)

T+;3§+WB—£+V5§- ay ”

12%%7%
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in the tangential directlon and

e

r

v R UJW , . W
r

u v ow ow
+ 3 36 + V35 + ?'35 -V S;— = - +~; Y- W'g; (1p)

in the radial direction, where u, w, and Vv are the boundary-layer
velocity components in the 8, r, and y directions, respectively. Con-
sistent with the restriction to thin boundary-layer flows over flat (or
nearly flat) surfaces as required for the formulation of the boundary-
layer equations (egq. (1)), the mainstream velocity components are

U = U(r,6) (28)

W= W,o) (2b)

The equation of continulty for the boundary-layer flow is

1du oW W OV
T TETrErTG -0 (e)
The appropriate boundary conditions are
Uu=w=v=0 for y=0 (14)
u=>U
ag y > o (1e)
w>W

Similarity with Respect to Stationary Polar Coordinates

The boundary-layer equations may be transformed by the use of a
generalized space variable

1 = L g(r,0) (3)
v
and by defining
u = UF*(q) (42)
w s we'(n) (4p)

to & new system of coordinstes r, 6, and 7. The definitions (4a) and
{4b) are the requirements for similarity of the boundary-layer velocity
components in the plane of the surface with respect to thelr corresponding
polar coordinates.
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The choice of polar coordinaetes (as in ref. 15) requires an additional

precaution beyond those needed for similarity with respect to rectangular
coordinates. In rectangulsr coordinstes when either U or W 1s zero
(see ref. 14), the mainstream flows are straight, there is no secondary-
flow overturning in the boundary layer, and complete similarity solutions
have been obtained for the equations of the resulting two-dlimensional .
boundary-layer flows (refs. 4 and 5). In the present case, however, when
the mainstream radial component W = O, there is curvature of the masin-
stream flow, U % 0, and three—dimensional boundary-leyer .overturning
results (i.e., w # 0, for = 0). Under these conditions, equation (4b)
does not apply. Instead a new function W(r,G) is defined for

w TJG'(TI)) Wié 0 (4c)
Accordingly, it is convenient to treat W %.0 flows separately from
W=0, W#£ O flows. ’

W f 0. - When the mainstream flow has both U and W components,
the corresponding boundary-leyer velocity components are defined by
equations (4a) and (4b) as functions of the similarity parameter 1.
Corresponding to the conditions of no flow at the surface (eq. (ld)), the
boundary conditions on F' and G' are __

F'(0) = G*(0) = O (5a)

Corresponding to the condition (le) that the u and w boundary-layer
components merge smoothly into main-flow components U and W,

respectively,

lim F'(q) = 1
n—)oo
(5b)
lim G'(n) =1
1]-#0:

Now Vv may be determined by integration of the continulty equation
using (4a) and (4b):

- 13U UJ 1n oW dIng W
"=%E[<;a—e-;—sé—§>F+(§;'W—sr+;){]‘
% é_%g-ﬂ yF' - w-é—%g—ﬁ yG' + f(r,8) (6)

where f(r,e) is an arbltrary function erising from integration.

yeey
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In order that v =0 for y = 0 as required, it is possible with-

out loss of generality to set the boundary conditions
F(0) = G(0) = 0, and f(r,8) =0 (5¢)

(See appendix C, ref. 14, for a discussion of the necessary and sufficient
boundary conditiouns.)

Upon substitution of equations (4a), (4b), and (6), equation (1la)
becomes (for W £ 0)

W " 1 BU 1"

2 (F'G' - GF" - 1) + = 55 (F'2 - FF -1)+w§—31-§E(F'G'-1)+
U o 1n S FF" 4 W d 1n gZ GF" - oW GF" - ZFm =0 (7)
2r o8 r or g -

and equation (1b) becomes

2 2 . oW 12 " 13U 11
(1 - F'2) & —-—75——- (FtG* - 1) + St (G'& - G&" - 1) - T 36 FGO o+
2
zg a"a—"—lg € m" +§%§«i Ge" - ¥ Ge" - g2G"™ = 0 (8)

As in references 14 and 15, the purpose of this Investigaetion is to
determine mainstream flow solutlions for which the transformed equations
(7) and (8) reduce to ordinary differential equations. As an extension
of reference 15; the present analysis conslders flows restricted to a
sector-region of small central angle 6. The mainstream flow conditilons
are sought which make the coefficients of the functions of 7
proportional.

The most general approach would be to rewrite (7) and (8), grouping
the coefficients of like terms in G,F and their derivatives, and then
to require proportionality of these grouped coefficients. It can be
shown, however, that no cases arise beyond those obtalned more simply by
requiring proportionality of the individual coefficients in (7) and (8).
Under these ordinary differential equation conditions (a@bbreviated to
o.d.e. conditions), the common varisble terms in the equations may be
divided out, leaving ordinary differential equations for F and G. The
actual numerical solutions of the ordinary differential equations are not
attempted herein.
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For convenience, the coefficients for the functions of 1 in equa-
tions (7) and (8) are presented here in the order of theilr appearance.
With W £ O, they are

@ ¥ ® &
® 3% @ &
@it  @F
®Z2HE oY

The o.d.e. condltions require these nine coefficients to be pro-
portional to each other.

= 0. - When W = O, the corresponding boundary-layer equations

(12) __——le) become

uw , u du ou 3%y U
5—”’5—”’3— Y3yE T 30 (se)
_ EE u dw W 4 v ow v %y - . QE (9b)
T r 96 3— 3y dy2 *
The equation of continuity for the boundary-lsyer flow remalns unchanged:
1du . ow ov
rg- §—+-—+§——0 (lc)
The boundary conditlions now are
u=w=v=0 for y=0
u-=+7U
as y o+ = (9¢c)

w >0

144
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For main flows such that W = O, define

u = UF'(n) (4a)
w = WG'(n) (4c)
where W = W(r,8) £ O. The boundary conditions on F' and G' required

to satisfy boundary conditions on u and w in equations (9) (W = O,
W(r,8) # 0) are

F'(0) = G}(0) =© (102)
lim F'(n) =1
L i

(10b)
lim G*(n) =0

The expression for v obtained by integration of the continuity
equation (lc)} is the same as (6), with W being replaced by W:

-] "[(13”_% )F+ oW TJ—B—%:—S+§)G]—
Ud 1o e yp - 5210 E yer 4 f(r,0) (11)

As before, the boundary conditions chosen as sufficient to provide
that v =0 for y =0 are

F(0) = G(0) =0
{10c)
f(r,e) = 0
Substitution of equations (4) and (11) into (9a) and (9b) produces
g(F’G' - GF") +%%g (F*2 - FF" - 1) + wa—%—n—u- F'G® +
Ualngz 1 Walngz ] aﬁ ] Zu_
—Z;TFF' +—1——GF'—§_-G—F'—gF'—O (12)

2
R R LE L P JAC R L P

Ualngz 1 T/_falnz u__ﬁ 1 e Dant
o e F g S5 S cet - 6" - et o (13)

1
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The argument concerning determination of the o.d.e. conditions by
means of relations between the coefficients of the functions of 7 in
(12) and (13) remains unchanged. These coefficients, it may be noted, are
the same as the coefficients for equations (7) and (8), respectively, with
W replaced by W. )

Solutions for Small Variation of 6

As the flow is consldered restricted to regions of small variation
of 6 (i.e., regions that are narrow sectors having small central angles ),
coefficlents wlll be neglected that are of second and higher order in @
relative to the other coefficlents. In order to do this, it is assumed
that U(r,9), W(r,0), and W(r,8) are expressible as

U(r,8) = £5(r)n,(6)

w(r,0) fg(r)hz(e): W % o

W(r,6) fg(r)hz(e), W=0

and that, in the region of interest chosen for conmvenience about 6 = O,
hi(6) and hp(9) are adequately represented by

hy(6) = ag®
hy(8) = bom

Hence, U, W, and W in the nelghborhood of 6 = O are considered to be
defined by ' o

U(r,8) = £7(r)e¥

W(r,8) = fa(r)e™ (14)
W(r,8) = fo(r)e™

As will be seen later, in some cases this assumptlon further results in
solutions that have properly defined leading edges. BSolutions are ob-
tained for the main flows in the following manner.

HCPP



4254

CF-2 back

NACA TN 3890 11

By substitution, the coefficients of the functions of F and G
in equations (7) and (8) for W # O or in equations (12) and (13) for
W =0 Dbecome

\
fa(r) oo

t -
= £(r)et1

fo(r)

t Vi)
7 1t

2r 08

fo(r) 2
£3(x)6"

gZ

O 6 ® ©® O O

(£1(x))% o
l'%zz r ) 621: §

SR SE

As before (refs. 14 and 15), the objective is to find conditions
(o.d.e. conditions) that make these coefficients proportional to one
another. Then the common r and 6 <factors may be divided out, and the
transformed equations reduce to ordinary differentisl equatlons. EHere,
however, with € small, it is assumed that terms of second and higher
order in 6 relative to the rest are negligible.

The procedure will be to establish the relations between constants
m and t (the powers of 6 involved) or the assumptions concerning
f1(r) or £5(r) that will lead to proportionality among the terms. The

following possibilities are suggested.
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m=t-1. - Waen m=1t - 1, 6 is a common factor of all the
coefficients listed in (15) except- (7) and may be divided out, ylelding -

£ A

@+

—~ N ——

(18)

fl

©Q @©® ® © ©

gZG—m

2
51
—
I‘fz

® ut )

Coefficlent @ is the coefficient—of the F" and G"™ terms in the
transformed boundary-layer equations. It must not be permitted to vanish,
for that would reduce the order of the transformed equations, and the
number of boundary conditions on F and G would then exceed the order
of the equations. Consequently, @ is made proportional to @ , with
the result that

2

@

2 = g £io0 . (17)

€ 1t2

Coefficient @ is therefore-independent of_ a. __Coeffi;ient ig of
second order in 6 relative to the rest and is therefore neglected.
From o.d.e. conditions on @ and @,
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and, from (O and (&),
a
£y = 8. 4 (19)

Therefore, combining (14), (17), (18), and (19) and redefining the
constants ay for convenience results in

U = arnem-'l'l
W =Dbrle®, W# O (20)
g2 = cr?-lg™

The corresponding ordinary differential equations are obtained by
substitution in equations (7) asnd (8):

b(n+1)(F'Gt -1) -ﬂ%"ﬁ GF' +a(m+1) |—_(F')2 - 1]-—(——)-& mz+z FF" - ¢cF" = 0
(21)
am(F‘G' - l) + bn EG{)Z - ]] - P_(i.zi_:'il GE" - f_ﬁ%z_l Q" - cG™ = O

(22)

with equation (5) giving the boundary conditions. When W = O,

W =br™ £ 0; and substitution into equations (12) end (13) yields

b{n+ l) G —Eﬁnz-l-—sl GRE" +a(m+ _‘]_) [(Fl )2 - ]] - a£m2+ 22 FE" - cF" = O

(23)

am(F'G*) + bn(G')2 - ﬂizi_il aa" - 9-5-?%—2-2 FG" - cG™ =0 (24)

with equation (10) giving the boundary conditions. It is important to
note that the boundary conditions on G' are different for W # 0O in
equations (21) and (22) from those for W= 0, W# O in equations (23)
and (24). While a more general case appears to be

m=t -k, k=1,2,3
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only the case discussed here, k = 1, has any practical significance-for

this analysis.

When k > 2, then, for small &, U is negligible when

compared with W, and the resultant flows are cases of U = 0.

m=%t + 1.

all terms by

From the o.d.e.

has the form

- When m=t +

give
&

®

®

®

®

®

@

®

®
conditions
I

1, substituting into (15) and dividing

\

£ 2
220 1ng” o2 & (25)

m i
T h Y

on @ and it can be seen than gz

b
- 3} £ 612 | (28)

Yo
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Coefficient () 1s therefore independent of 6 and so O, ®, &, and
are considered negligibly small. The modified coefficients are now
written

@ o ]

m- 1

®

1

0 > (27)

@ @ O ® @

@)

HIB

H
l_)

J

From the o.d.e. conditions and @ it can be seen that
f1 = bofy (28)

and no further restrictions on the form of f; or £y are required, as
all coefficlents are proportional. Then using (14), (26), end (28), U,

W, and gz sre written

U = af(r)e™l

W=Dbe(r)e™, W#O (29)

g2 = < z(r)e™ 2

and equations (7) and (8) become

a(m - 1) [(F‘ > - 1] - %m FF" - cF" = 0 (30)
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2
- %; [EF')Z - %] + am(F'G' - 1) - %? FG" - cG" =0 (31)

The-boundary conditions are given by equation (5).

When W = 0, W = bf(r)6™ # O, substitution info equations (12) and
(13) produces ' : -

a(m - 1) I:(F')Z—ZEI-%IEFF"—CF"'=O (52)
- %E I:(F')2 - 1] + am(F'G*) - Ez? FG" - cG™ =0 (33)

Again, while . S S o
m=%t+%k, k=1,2,3

appears more general, only k = 1 actually applies here. When k 2 2,
W = 0 under the present—assumptions, and the resulting flow is equiva-

lent to taking b = O in equations (20) or (29).

m=0. - When m = 0, from o.d.e. conditions @ and and the as-
sumption that terms of second or higher order in 6. relative to other
terms may be neglected, t = 1, -1, or O. The case— t = 1 corresponds
to the case of equation (20) and@ t = -1 to the case of equation (29).
If t=0, U= U(r), f; 1is proportional to fp, and therefore

U = ar?

W (or W) = brR (34)

gz = cr

n-1

This case and the resulting ordinary differential equations are the same
as were obtained by taking U = U(r), m = O in the exact solutions
(ref. 15). ' -

t =0. ~ When t = O, examination of the o.d.es conditlons discloses
no cases not already obtained by the anslysis.

f1(r) = & or fy(r)=b. - Where f1(r) is taken to be & constant;—
a, U = U(9) alone and the coefficients in (15) become

12337
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Po N 2
2-3_—513% gm ? (35)

Q © @ ® ® ® ©
K

©
wh#
[z}
D
N
ol
B

Just as before, two significant possibilities occur, m =t - 1 and
m=t+ 1. When m=t - 1, equation (18) applies and £, 1is a constant.

This corresponds, of course, to n = O (eq. (20)). When m =t 4 1, the
analysis leading to equation (28) applies, and the resultant flows cor-
respond to f(r) constant in equation (29).

When £fo(r) is constant, the same results are cbtained and £1(r)
must likewise be constant.

RESULTS AND DISCUSSION

The analysis of three-dimensional, laminar, incompressible boundary-
layer flows having similarity with respect to polar coordinates has led
to two different categories of solutions. In the first are the solutions
for meinstream flows described in reference 15. In the second cetegory
are perturbation-type solutions obtained here whose validity 1s restricted
to regions of small veriation of angle 6. The malnstream flows for the
latter category are described by equations (20), (29), and (34).
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The flows represented by equation (34) are actually a special case
of the exact solutions of reference 15 and willl not be discussed further.
As & result of these analyses, table I has been prepared, which summarizes
the four new cases obtained here of malnstream flows over a flat or
slightly curved surface for which the boundary—layer flows have similarity
wilth respect to polar coordinates. o

The cases are as follows:

Case I: U = arfemtl
W=br", b £ 0
Cese II: U = arbemtl
W=0
W=1br?", b £ 0 =
Case III: U = af(r)e™l
W=Dbf(r)™, b #0
Case IV: U = af(r)en-1
W=0

W=1bf(r)e™, b £ 0

As described earlier, secondary flows exist even though the radial
component of mainstream flow vanishes (W = 0). For such cases, & function
W(r zD) ¥ is defined, and the boundary—layer radial component of

flow is expressed as

w = Wa'(n) (4c)

The Mainstream

When W # O, the mainstreams are spiral flows. For W = O, circular
mainstream flows are obtailned.

g, Wz'ﬁ. - In regions where the thin-boundary-leyer theory is ap-~
plicable, the mainstream is very nearly parallel to the surface; U and
W are functions of r and 6 only. '

The analyslis for the exact sclutions for boundery-layer flows having
similarity with respect to stationary polar coordinates (ref. 15) showed

yeey
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that only one form of U and W (or W) is possible, that is

U = arneme
(38)

W(or W) = prle™

The present analysis results in obtalning & much wider variety of flow
solutions, represented by equations (20) and (29). In particular, there
are no restrictions whatsoever on the functional relation of U and W
(or W) to r in cases III and IV (eg. (29)). An example might be
chosen of circular main-flow streamlines where the inlet velocity U sat
the leading edge € = O varies in a sinusocidal fashion. The secondary-
flow overturning would then cause the boundary layer to pass through
reglons where the main-flow velocity is alternately increasing and de-
creasing. As will be seen later in the discussion of the boundary-layer
thickness and g(r,e), the boundary layer will correspondingly become
thinner or thicker.

The small-angle solutions were obteined by essuming that second and
higher power terms of 6 could be neglected. 1In all these cases, U and
W (or W) are obtained as products of powers of r and 6. In cases I
and II W/U (or W/U) is proportional to 1/6. 1In cases III and IV, W/U
(or W/U) is proportional to 6.

Projection of main-flow streamline on surface. - The equation for the
projection of the main-flow streamline on the surface for W # 0 may be
ocbtained by integrating

W dr
T~ T ae (37)

Whenever W # O and U #£ O, spiral mainstream flows result (cases I and
III). For W = 0, circular main-flow streamlines result (cases II and IV).

Slope of projected streamlines. - The slope of the projected stream-
line with respect to 6 = O (the tangent of the angle between the tangent
to the projected streamline curve at a point and the line 6 = 0) may be
obtalned from

-d—-'ban9+r

slope = (38)
dr
36 - r tan €

It is found by substitution into equation (38) that the slope is inde-
pendent of.radial position r <for all cases.
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Irrotationality. - For mainstream flows cornfidered here and in re-
gions of thin boundary layers, as reguired for this analysis, only the
component of vorticity normal to the surface

PB-E-F (350)

can be much different from zero (ref. 14). The values of the constants
specified under the listing “Irrotationality" (table I) were obtained in
each case from

19 U U
IS H%or=0 - (390)

These values set the conditions for nearly irrotational malnstream flows.

The Boundary Layer

As discussed in references 14 and 15, the physical interpretation of
the boundgty-layer behavior that the mathematical representations describe
is best found by exemining the behavior of 1 and in particular g(r,8).

The boundery-layer thickness on the surface at a point—r,8 is in-
versely proportional to g(r,e) at the point. In order for the theoreti-
cal boundary layer to have a beglnning at a leading edge with zero thick-
ness, as in a real fluid, there should be a line along the surface for
which g(r,0) is infinite while the velocities remain finite. In the
exact solutions presented in reference 15, this occurs in the finite part—
of the plene only at the point r = 0 for values of n<1l. For n>1
the boundary layer in reference 15 may bé considered to have a "beginning"
only at r = «. However, the mainstream velocities there take on

"infinite" values.

In the present report (flows for small angle 6), for cases I and II
when -1 < m <O, g(r,0) and hence 7 becomes infinite along the line
6 = 0, while U is finite as required. In case I, however, W (and w)
are unbounded, s0 @ proper leading edge does not exist there. Iﬁ‘case
IT, W=0 but W is unbounded at 6 = 0. In cases III and IV, for
l<m <2, there is a properly defined leading edge at 6 = O, where
g(r,8) takes on infinite values and where U, u, W, and w remain
finite.~For l< m< 2, in cases III and IV, U = W =0 at the leading
edge. For m=1,T is independent of .8 = and may be different from

zero at the leadling edge.
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In cases I and II for m >0, and in cases III and IV for m > 2,
along the line 6 = 0, the malnstream and the boundary-layer velocity
components are all zero. Even though the boundary-lsyer velocities match
the mainstream in these situations, a proper leading edge does not exist

) 33 1t
there bhecguse g(r,e) equals zeroc, corresponding to an "infinltely" thick

boundary layer. As in reference 14, such accelerated-flow cases may be
considered appropriately by confining the discusslon to regions where the
requirement of thin boundary layers is satisfied.

The Ordinary Differentisl Equations

The sactual numerical solutions of the ordinary differential equa-
tions are beyond the scope of the present investigation. The literature
contains examples of numerical solutions for particular values of the
constants. Some of these examples are noted in the listing "Comments and
References" associated with each case in table I.

The present analysis simply derives the ordinary differential equa-
tions that can be obtained with the underlying assumptions. In any
barticular case of interest for which the equations are appropriate, the
existence of the numerical solution and its computatlon must be obtained
individually. Nevertheless, some general remsrks (in part repeating
material from ref. 14 here for convenience) can be made here (as in ref.
11) concerning the numerical solutious.

Separation of F and G. - Under certain choices of the free con-
stants involved, the functions F and G are separable; that is, one
equation of the pair of ordinary differential equations wilill contain
terms in only one of these functions and its derivetives. Numerical
solutions are much more readily obtained in such cases than when the
functions are not separated.

An example is provided when & = O (case I), so that equation (22)
then contains terms only in G and its derivatives. 1In all cases where
the functions can be separated, the equation is thereby reduced to a
Falkner-Skan type equation. The camplete solutions to Falkner-Skan equa-
tions have been obtained in references 4 and 5. Thus, equation (30) (case
III) and equation (32) (case IV), in which the functions are already
separated, are all Falkner-Skan equations.

Although it is not apparent from the equations in the table alone,
when & = O, then u = 0 and equation (la) and therefore equations (21),
(23), (30), and (32) disappear. In cases I and IIT (W # 0), when a = O,
the flows are stralght two-dimensional flows along radiel 1lines out from
a stagnation point. In cases II and IV (W= 0), a = O is the trivial
case of no mainstream flow.
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In case ITI, when a =5b, F = G. If, in addition, m =0 and
c = -a, eguation (30) becomes equation (9.12) of reference 16:
F" - F'2 + 1 =0 - (40)
As pointed out in reference 16, this is one of the few cases when the .

boundary-layer equatlon can be solved in closed form. The solution is

F* =

ale
i

3 tanh?® <—,<ﬂ/_E + tanh'l/\/%) -2 (41)

0, equation (30) becomes’

When c=a=b and m

F" + F'2 _ 1 =0 (42)

Letting
F(-n) = F(n) (43)

then by differentiation of equation (43) and substitution, equation (42)
becomes : : - = - o

Fr-F241=0 (44)

and the solutlon thereby is seen to be

Ft =2 = 3 tann? (% + tanh~1 %) -2 (45)

Linearity in u or w. - As discussed in reference 14 and applied
in reference 13, an extension of the solutions beyond strict similarity
of the velocity component can sometimes be made by addition of solutions
where the boundary-layer equations are linear in u or w. Apparently
such extenslons are not possible for the boundary-layer flows investi-
gated here, because equation (1) is always nonlinear in u and in w

a

except for the typical case of no mainstream flow. Nevertheless, there
is the complete freedom from specification of the form of f(r) in cases

IIT and IV. Accordingly, if
Ul = alfl(r)em'l

and

Uy = apfp(r)ed-t

1244
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are possible solutions for mainstream flows, then

U=Uj + Uy = [a.lfl(r) + azfz(r):l oL = ap(r)om-l

likewise represents a possible masinstream flow, although solutions for
u and w cannot be superimposed. This fact (the reasoning is the same
for W as for U) is evident also from the ordinary differential equa-
tions for cases III (egs. (30) and (31)) and IV (eqs. (32) and (33)),
which are independent of the form of f£(r).

Comparison with Experiment

An experimental investlgetion was made to determine whether the

theory provides & reasonsble approximation of the limiting flow deflec-
tions for the particular case of cilrcular flow over a flat plate. Of the
cagses presented, this case is the one most likely to be encountered in

sctual practice.

Theoretical prediction of limiting deflection. - The casge that will
be investigated is case 1V with m = 1. Under this assumption equations

(32) and (33) become, respectively,

"
FFT + " =0 (46)
11
“TIGY (FIZ - l) + Eg_ +G"=20 (47)

where the following relation between the verious constants has been
chosen:

C =4a8==b

Equstion (46) is the Blasius equation, and values for F are tabulated
in reference 13. Reference 12 shows that the function G' 1in eguation

(47) is expressible in the form
G' = P(n) - F'{n) (48)
where P(7) is the solution of the equation

L (49)
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with the boundary conditions

lim P(q) =1, P(0) = O

N > e

The solution of equation (49), however, ls presented in reference 13, and
the values of P(n), (Py(n) in ref. 13) are presented in tables.

Now the angle of flow deflection of the boundary layer at the plate

surface is determined by
arc tan < 1lim E>
u
y -+ 0

G_C
arc tan lim 7
n+0

As Gf(0)/F*(0) is an indeterminate form, application of L'Hospital's

rule gives
G“
arc tan 1im T
n =0

-<
]

-
]

Pl
a t 1i -
rc tan [;'*Fb (F" ;[]

The value of P'(0)/F"(0), however, is determined in reference 12 to be
4.270. Hence, '

Y = arc tan 3.270 (50)

From egquation (50), the equation for the limiting deflection line on
the plate surface can be found as the solutlon of the differential

equation:

= tan v = 3.270 (51)

HlH
&lg

Equation (51) has the solution

r = (const.) e3-270 8 (52)

25044



4254

NACA TN 3890 25

Experimental determination of limiting deflection. - The experimental
determination of limiting flow deflection was made by means of smoke flow
visualization (epparatus and procedures described in ref. l) in & Lucite
two-dimensional circular channel of rectangular cross section. Tests were
conducted on a plaete parallel to the base of the channel and fastened to
the channel walls at a distance of approximately one-third the channel
height. With a maximum Reynolds number of about 6X10%, the flow for these

tests was well within the laminar range.

Figure 1, a view d f the channel, shows smoke
introduced lnto the mainstream at approximately & midchannel position.
On the test plate shown in the photograph, the circular white lines cor-
respond to the theoretical mainstream flows. The straight lines orthogo-
nal to the circular lines represent 10° increments in €. The dotted
lines appearing on the plate are the theoretical limiting deflection lines
based on equation (52). The main-flow streamlines as depicted by the
smoke trace were found to follow closely the theoretical main-flow stream-
lines well beyond the region of interest near the leading edge of the
plate, although this is somewhat obscured by parallax in figure 1. Near
the exit of the channel, some deviation of the smoke trace from the cir-
cular arcs occurred because of secondary-flow accumulations.

Figures 2(a) and (b) show limiting flow deflection determined by
introducing smoke directly on the plate surface. The photographs show
that the theory predicts limiting deflection very well in the range
0= 6 £ 10° Beyond 10° the theory predicts a greater overturning of
flow than that indicated by the experiment. These results give an order
of magnitude to the range of values of 6 vwhere the small-angle approxi-
mation appears to be reasonsble.

Predictlon of limiting deflectlon based on translate flow. - Refer-
ence 12 presents an analysis of three-dimensional boundary-layer flows
when the main-flow streamlines are translates (i.e., all streamlines are
obtained from a single streamline by propagaetion of the streamline par-
allel to the plate leading edge). As a matter of interest, this theory
was also used to predict limiting deflection for the present case.

In effect, a comparison can be made between the results predicted by
two distinct kinds of approximations. In the small-central-angle varia-
tion method the spproximation 1s made in the solution of the boundary-
layer equations while the description of the mein flow is exact. In the
stream] ine-translate method the approximstion is maede in the representa-
tion of the main-flow streamlines while the solution to the boundary-layer

equations obtained is exact.

For the streamline-translate method, a mean value between the radius
of the inner wall of the channel and the radius corresponding to the
starting point of the outer limiting l1ine shown plotted in the photographs



26 NACA TN 38390

was chosen as the defining radius of a typlcal circular-arc streamline in
tranglate flow. Since circular-arc translate flow 1s snalyzed and the
limiting flow deflection i1s determined in reference 12 (see fig. 5, ref.
12), the results could be applied directly in the present investigation.
The basic assumption underlylng such an application is that circular-arc
translate flow of-the—type described 1s a reasornable approxlimation of the
concentric-circular-arc streamline flow that actually exlists in the
channel.

The results of the analysis are presented in figure 2(c). A 30° sec-
tion ofthe channel is sketched, and the theoretical limiting deflection
lines for both the translate-flow enelysis and the small-angle analyeis
are Indicated. The circles appearing on the sketch represent points on
the smoke flow pattern as measured from the photographs. It can be seen
from figure 2(c) that the translate-flow analysis is less accurate than
the small-angle analysis up to about 10°; but, from 10° on, the agreement
between theory and experiment improves for the translate analysis. After
209 it appears thet the predicted limiting line and the actual limiting
line are very nearly parallel up to the polnt where wall interference
causes the boundary leyer to deflect in a clrcumferential direction.

CONCLUDING REMARKS

Exact solutions were obtained in reference 15 describing the main-
stream flows over a flat or nearly flat surface for which the thin laminar-
boundary-layer flows have similarity with respect to statlonary polar co-
ordinates. The solutions thus obtalned were of the form

U= arneme

W = briel®

By suitable choice of the constants a, b, n, and m, the main flows may

be stagnation-point, spiral, or circular flows. The boundary layers for

these exact solutions have no properly defined lesding edge in the finite
part of the plane, resulting in some awkwardness in relating these theo-

retical flows to real physical flows. : : -

The present analysls 1s restricted to regions of small central
angle 6. The sppropriateness of the restriction in physical situations
has been established experimentally (refs. 1 to 3 and 13) The malinstream
flows obtained herein are -
U = arn9m+l
(ceses I and II)
W (or W) = brfe®

ERalal 3
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U = af(r)e®™+
_ (cases III and IV)
W (or W) = bf(r)e™

In cases IIT and IV for 1 <m < 2, g properly defined leading edge can

be obtained along the line 6 = O where the boundary layer has zero
thickness and the mainstream velocity components do not become infinite.
Although different velocity distributions are obtained here, the projected
maln-flow streamline configurations possible are the same as those of ref-
erence 15; that is, (1) stagnation flows along radial lines from a stag-
nation point, (2) spiral flows out fram (or in toward) a central point, or
(3) circular flows.

Actual numerical solutions of the transformed boundary-layer egua-
tiong are not attempted here. Particular examples are noted, however,
for which solutions have been obtained elsewhere.

An experimental comparison of limiting overturning at the wall under
circuler malnstream flow using smoke flow-visualization techniques showed
good agreement for the first 10° of the mainstream turning.

Lewis Flight Propulsion ILaboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 26, 1956
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TABLE I. - SIMILARITY SOLUTTIONS IN STATIONARY POLAR COORDINATES FOR SMAILL ANGLE VARIATION

(a) Case I
U arn9m+l
W brie”, v £ 0
el m /2 1/2 1/2
[y 2] cU oW
n ] — = ¥\Sart =¥\vbF) o ¢ #O
Ordinary (21) p(n + 1)(F'G' -2) - tl(r%’—;)— GF" + a(m + 1) |:(fl")2 -1] - a—(ﬂgﬁ)- FF" - cF™ = O
differentlal
equations

(22) am(F'a' - 1) + bn[(G')2 - 1}" ot 3) ggn - ﬂﬂ—;——a)-m" - 0" =0

Boundary conditions

F'(0) = G'(0) = F(0} = a(0) = O, %m Fr(n) = TZ;.im ar(n) = 1

Projectlon of maln-
stream on surface

P m ceb/a spiral flow streamlines (& # 0)

Slope of projected
streamline with
respect to 8 =0

% tan 6 + €

I
i g tan @

Irrotationallty

m=aga(n+1) =0

Linearity in
u and w

Eig} Not poesible for thilse case

Separatlon of
F and G

21) Not poselble for this case
p2 a=20

Comments and
references

g = 0, atagnation flow: eq. (la) and eq. (21) vanieh and eq. (22) becomes a
Falkner-Skan equation with solution completely lmown, refs. 4 and 5.
Ref. 8: a=0=nm=xl, mmb, b=~ fromuref. 8.
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TABLE I.

- Contimued. SIMILARITY SOLUTIONS IN STATIONARY POLAR COORDINATES

FOR SMALI. ANGLE VARIATION

(b) Case II
U Brn9m+1
W 0

brle®, b £ ©
crD-lgm 1/2 el V2

n v\ = YGare) o F0
Ordinary (23) b(n + 1) Frar - 20F3) gpn 4 a(ms1) [(#1)2 -1] _almr2) g _gpmo g
differential
equations

(24) am(F'a') + bn(ar)2 - 9193}—§l ag" - 2+ 2) ggn _ oqwa o

Boundary conditions

F'(0) = @'{0) = F(0) = @(0) =0, lim F'(N) =1, lim G'(7) = O

I -+ @ - -

Projection of main-
stream on surface

r = C, clrcular-flow streamlines

Slope of projected

streamline wilth - Cotangent @
respect to 6 = 0°
Irrotationallty (n+1) =0

Linearity in
u and w

1a

lb} Not poseible for thls case

Separatlon of
F and @

{gi; Not posslble for this case

Comments and
references

a =0, no flow

. ) 22y

og
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TABLE I, - Continued. SIMILARITY SOLUTIONS IN 3TATIONARY POLAR COCRDINATES

FOR SMAIL, ANGLE VARIATION
(e) Came IXI

U af(r)em"l
W pe(r)68™, b £ O

1/2 1/2 1/2

m-2

n y(cf(rv)g ) - y(__g“gg) - y(——-gv;:e ) , ¢ ;& 0
Ordinary (30) a(m - 1) BF‘)Q - 1] ~ B EF - cF" =0
differential
equation

(51) - E};[(F.)E - 1]+ am(Fr@r - 1) - 5 Ra" - ct™ =0

Boundary condifions

F'(0) = G'(0) = F(0) = G(0) = 0, 1lim F'(n) = 1rll'm a(n) =1
HET - -

Projection of main-
stream on surface

r o= cebea/aa, spiral flow (a £ 0)

Slope of projected
gtreanline with
regpect to 6 =0

6 tan 9 + §

g - % tan 8

Irrotationality %-bf(p) - art(zp) - % £(r) =0
L
ui“§§§1t§ in {iﬁ; Not possible for this case

Separation of
F and @

(30) Separated
(31) a = m = 0 (mee comments and references)

Comments and
references

Eq. (30) 18 a Fallmer-3kan equation, completely solved
in refa. 4 and 5. )

If a =0, eq. {(1la) and eq. (24) vanish, stagnation flow,
boundary condltions net achlevable.

If a=b, Fm@: if m=1]), F = Blagluse F

Ref. 16, eq. (9:12): a =bh = -c < 0, m = O,
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TABLE I. - Concluded. SIMILARITY SOLUTIONS IN STATIONARY POLAR CCORDINATES

FOR SMALL ANGLE VARIATION

(¢) Case IV
U af(r)Bm"l
W 0

pf(r)e™, b £ O
1/2 1/2
m=-2

n y(_f(_l),e_.) y@_gv) e A0
Ordinary (32) a(m - 1) EF')E - 1:| - -i‘,i,'i FP" -~ cF" = O
differentlal
equatlion!

(33) - 952-|ZF')2—1] + am(F'@r) - %‘i FG" - c3" = 0

Boundary conditions

F1{0)=6'(0)=F(0)=G{0)=0, 1171m F1(n)=1, 11’5_12 Gt(h) =0

Projection of main-
astream on surface

r = C, circular-flow streamlines

Slope of projected
streamline with
respect to 0 =0

- Cotangent ©

Irrotationality

£1(r) + Z £(r) = 0

Linearity in
u and w

&g} Not possible for this case

Separation of
and G

32; Separated
33) a = 0 {See comments and references)

Comments and
references

Eq. (32) 18 a Falkner-Skan equation completely solved 1in
refs. 4 and 5.

If a = b, F £ @ (8ee boundary conditions)

If m=1, F = Blasius F

Ref. 9: c=a=b, m=1,

If a = 0, no flow.

FES¥
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(b) Boundsry-lmyer streamline mear mjidchamel at inlet.

Tigure 2. - Continwed. Limiting flow deflsction in ciroular shammel.
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{(a) Boundary-layer streamline mear pressure surface at inlet.

Figure 2. - Iimiting flow deflection in circular chammsl.
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(b) Boundary-lsyer streamline nesr midcharmel at inlet.

Figure 2. - Continued. Idmiting flow deflection in circular chammel.
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— — — Small-angle solution
—=—= Translate solution
(o] Polnts on emoke flow pattern

(¢) Comparison of translate solution with small-sngle solution and smoke pattern.

Figure 2. - Concluded, Limiting flow deflection in circular channel.

9g

0682 NI YOVN




